Immunopathogenesis of olmesartan-associated enteropathy

*Department of Immunology, Mayo Clinic, Rochester, MN, USA.
†Department of Dermatology, Mayo Clinic, Rochester, MN, USA.
‡Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
§Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA.

Correspondence to:
Dr J. A. Murray, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA.
E-mail: murray.joseph@mayo.edu

Publication data
Submitted 6 February 2015
First decision 27 February 2015
Resubmitted 14 August 2015
Resubmitted 3 September 2015
Accepted 3 September 2015

This article was accepted for publication after full peer-review.

SUMMARY

Background
Olmesartan-associated enteropathy (OAE) is characterised by diarrhoea, nausea, vomiting, abdominal pain, weight loss and severe sprue-like enteropathy, all of which are resolved after discontinuation of olmesartan medoxomil.

Aim
To determine the mechanistic similarities of OAE with coeliac sprue.

Methods
Duodenal biopsies were extracted from OAE patients before (n = 11) or after (n = 17) discontinuation of olmesartan medoxomil (on or off olmesartan medoxomil). There were seven ‘on/off’ paired samples. Formalin-fixed biopsies were stained for CD8, CD4, FoxP3, IL-15R and psmad 2/3. Caco2 cells (human colonic epithelial line) were treated with olmesartan medoxomil and stained for IL-15, IL-15R and ZO-1.

Results
In the ‘on olmesartan medoxomil’ duodenal biopsies, a significant increase in the numbers of CD8+ cells and the number of cells that are FoxP3+ (a regulatory T-cell marker) are present in the duodenum as compared to the duodenal biopsies from patients who discontinued olmesartan medoxomil. IL15R expression is also increased with olmesartan medoxomil use. Evaluation of the effect of olmesartan medoxomil upon Caco-2 cells demonstrated that IL15 expression is increased in response to olmesartan medoxomil treatment. Further, ZO-1, a tight junction protein, is disrupted in olmesartan medoxomil-treated Caco-2 cells.

Conclusions
Olmesartan-associated enteropathy shares many features with coeliac disease, including symptoms and immunopathogenic pathways, such as increased numbers of CD8+ cells and corresponding overexpression of IL15 by epithelial cells. Taken together, the treatment of epithelial cells with olmesartan medoxomil induces a response by intestinal epithelial cells that is similar to the innate effects of gluten upon the epithelium of coeliac patients.
INTRODUCTION

Olmesartan-associated enteropathy (OAE) is an enteropathy associated with the use of olmesartan medoxomil that resolves with the discontinuation of the drug. It is characterised by diarrhoea, nausea, vomiting, abdominal pain and weight loss. The occurrence of OAE in individuals who routinely use olmesartan medoxomil is currently unknown but is thought to be rare. At Mayo Clinic, 35 individuals have been diagnosed with OAE in the last 5 years, and a national study done in France identified 31 OAE patients. There have also been multiple case reports from around the world. Although the frequency for OAE appears to be low, it is imperative to rapidly identify these individuals, because complications of OAE are severe, including renal failure, and suspension of the drug leads to resolution of symptoms and mucosal healing. Olmesartan is an angiotensin II receptor blocker (ARB) and is administered as a prodrug (olmesartan medoxomil). Of these, only olmesartan medoxomil has been consistently reported to be associated with enteropathy. Olmesartan differs from most other ARBs in the attachment of the medoxomil moiety. The one other ARB with medoxomil, azilsartan, was approved by the US FDA on 25 February 2011 and is not widely used. As yet, no associations between azilsartan and enteropathy have been reported. Histopathologically and clinically, OAE appears to have many similarities to coeliac disease and some similarities to autoimmune enteropathy.

To determine the mechanisms that occur in OAE, we did a set of analyses that were inspired by the marked similarities in both the clinical symptoms and histopathology shared between coeliac disease and OAE. As a starting point, we first took duodenal biopsies from the OAE patients before and/or after they discontinued their use of olmesartan medoxomil (on or off olmesartan medoxomil) and then characterised the cell types of the infiltrate.

MATERIALS AND METHODS

Diagnostic criteria for OAE
The following three criteria were used for diagnosis of OAE:

(i). Chronic diarrhoea (>4 weeks) while taking olmesartan medoxomil.

(ii). An alternate cause for the enteropathy could not be established after a systematic diagnostic evaluation that included investigation for disorders associated with nonresponsive coeliac disease as previously reported by our group.

(iii). Clinical improvement after discontinuation of olmesartan medoxomil.

OAE patients
Duodenal biopsies from 26 OAE patients were used for the immunohistochemistry analyses. Of the 26 OAE patients, 11 were men and 15 were women. For the alternate diagnosis evaluation, the medical histories of 35 OAE patients were reviewed. For this, the ratio of males to females was again 0.7–1.0.

Extraction of duodenal biopsies
For the diagnostic evaluation, a small bowel biopsy was done before withdrawal of the drug (on olmesartan) and one after discontinuing the use of olmesartan (‘off olmesartan’). ‘Off olmesartan’ biopsies were defined as biopsies performed at least 30 days after the date of suspension of olmesartan with a mean of 3 months after date of suspension. Duodenal tissue was immediately placed into formalin and later embedded into paraffin. There were seven paired small bowel biopsy samples, with which a biopsy was taken while the patient was on olmesartan medoxomil (on) and another paired biopsy was taken after the same patient discontinued olmesartan medoxomil (off). There were an additional four ‘on’ samples and an additional 10 ‘off’ samples that did not have a corresponding paired sample.

Immunohistochemistry
Immunohistochemical staining was done at the Mayo Pathology Resource Core Facility. Antibodies used were purified anti-CD8 (DAKO, Glostrup, Denmark), purified anti-CD4 (DAKO), purified anti-FoxP3 (Abcam, Cambridge, MA, USA), purified anti-granzymeB (DAKO), purified anti-IL-15R (Biorbyt, San Francisco, CA, USA) and purified anti-psmad2/3 (Santa Cruz Biotechnology, Dallas, TX, USA).

Treatment of Caco-2 cells with olmesartan medoxomil, olmesartan acid, diacetyl (medoxomil)
Telmisartan and Losartan
Caco2 cells purchased from ATCC (American Type Culture Collection, Manassas, VA, USA) were treated with trypsin (0.05% Gibco of Life Technologies, Carlsbad, CA, USA) and then cultured in media for 7 days on tissue culture microscope slides (Nunc Lab-Tek II Chamber Slide System – Thermo Scientific, Waltham,
MA, USA). Media was EMEM (Eagle’s Minimum Essential Medium-American Type Culture Collection) supplemented with 10% foetal bovine serum and penicillin/streptomycin. Olmesartan medoxomil (Benicar from Schering-Plough, Kenilworth, NJ, USA) was ground into fine particles and then resuspended into HCl (pH 6.8). Losartan (Thermo Fisher Scientific) was resuspended into phosphate-buffered saline (PBS). Olmesartan acid (Santa Cruz Biotechnology) was resuspended in DMSO (Dimethyl Sulfoxide-Sigma Aldrich), as well as telmisartan (Thermo Fisher Scientific). Diacyetyl (Sigma-Aldrich, St. Louis, MO, USA), the three different ARBs and DMSO were then added to the Caco 2 cells at 30 μmol/L concentration in 2 mL of fresh media. Exposure times were between 30 min to 4 h and are described in each figure legend.

Immunofluorescent analysis
Caco-2 cells were fixed in 3.7% formaldehyde and stained with purified anti-ZO-1 (Invitrogen of Thermo Fisher Scientific, Grand Island, NY, USA), purified anti-IL-15 (BioRad, Hercules, CA, USA) or purified anti-IL-15R (BiOrbyt). The secondary antibody used was FITC conjugated anti-rabbit IgG (Jackson Immunoresearch, West Grove, PA, USA). Nuclei were stained using DAPI (4’,6-Diamidino-2-phenylindole; Sigma Aldrich). Final evaluation and image capture of the staining was done with a confocal laser microscope (LSM 780, Zeiss, Thornwood, NJ, USA) using Zen 2010 software. Immunofluorescence quantitation was done using ImageJ (1.48v) software, available from the National Institutes of Health (Bethesda, MD, USA).

Statistical analysis of immunohistochemistry
For the CD8, CD4, FoxP3, psmad 2/3 and IL15R staining, the average number of positive cells in a villous/crypt unit was calculated after counting the total number of positive cells for three villous/crypt units, wherein a villous/crypt unit of area is defined as the area of one villous and the area below that villous extending through the crypt layer. For the epithelial staining of IL15R, and the intracellular staining of psmad 2/3 in the lamina propria, an intensity score was calculated. For the psmad 2/3 staining, 0 was no staining, 1 and 2 were given for weak and intermediate intensity, and 3 was the highest intensity of staining. For the IL15R staining, 0 was given for no staining, 1 was intermediary intensity and 2 was the highest intensity of staining. The statistical significance of the differences in total number of positive cells of each staining in a villous/crypt unit between the on and off olmesartan groups was assessed by the Mann–Whitney rank-sum test. The on group consisted of 11 samples and the off group 17 samples for CD4, CD8, FoxP3 and psmad 2/3 staining. The differences in intensity scores between the two groups were assessed by the Mann–Whitney rank-sum test. Graphpad Prism6 (GraphPad Software, La Jolla, CA, USA) was used to conduct the analyses.

RESULTS

Distribution of CD8+ and CD4+ cells
Previously we had published that lymphocyte infiltration of the small bowel (duodenum) occurred in patients with OAE.3 To determine the cellular composition of the lymphocytic infiltration, anti-CD8 (Figure 1a–c) and anti-CD4 (Figure 1d–f) staining was done on duodenal biopsies from OAE patients while they were on olmesartan medoxomil (Figure 1a,d) or off olmesartan medoxomil (Figure 1b,e). Results from the CD8 staining demonstrate a significant increase (P < 0.05) in the number of CD8+ cells in the duodenum of OAE patients on the drug as compared to off the drug (Figure 1c). This analysis was done on unpaired samples (11 on olmesartan medoxomil, 17 off olmesartan medoxomil). In contrast, the analysis of CD4+ cells did not reveal a significant difference (P = 0.67) in the number of CD4+ cells in the small intestine of OAE patients, comparing on and off olmesartan medoxomil (Figure 1f).

Distribution of Granzyme B+ cells
We next evaluated the expression of granzyme B to determine the potential presence of cytotoxic T lymphocytes (CTLs). Figure 2a shows greater numbers of granzyme B+ cells while on olmesartan medoxomil, as compared to off (Figure 2b), indicating that increased numbers of CTLs are present in the infiltrates of the duodenum of OAE patients. However, this was not statistically significant (Figure 2c) (P = 0.1 unpaired t-test using Welch’s correction).

Distribution of FoxP3+ cells
To determine if the OAE patients have a deficiency in their intestinal regulatory T cells, we next addressed whether olmesartan medoxomil treatment decreased the number of FoxP3+ cells. Figure 3a (on olmesartan medoxomil) and b (off olmesartan medoxomil) demonstrate that the patients did have a significant increase in the number of FoxP3+ cells (Figure 3c) (P < 0.05
unpaired t-test with Welch’s correction), despite the concurrent inflammation while on olmesartan medoxomil. This increase in FoxP3+ cells with olmesartan medoxomil use would indicate that the FoxP3+ cells were not able to effectively suppress the inflammation induced by olmesartan medoxomil.

TGFβ signalling through phosphorylation of smad 2/3
One method by which regulatory T cells are rendered nonfunctional, is the disruption of the TGFβR signalling pathway. Phosphorylated smad 2/3 (psmad 2/3) localised within the cell indicates that the TGFβ signalling pathway is activated, and nuclear translocation of psmad 2/3

Figure 1 | Distribution of CD8+ and CD4+ cells in duodenal biopsies: Biopsies were extracted from the duodenum of a representative OAE patient while on olmesartan medoxomil (a) and off olmesartan medoxomil (b). Anti-CD8 staining (brown colour) is depicted in (a) and (b) (10× magnification). The average total number of CD8+ cells in each villous/crypt unit was counted for unpaired samples and graphed in (c), which displays the mean and s.d. of the CD8+ cells per villous/(crypt unit) for unpaired samples from patients on or off olmesartan medoxomil. A significant increase in the number of CD8+ cells occurred while on olmesartan medoxomil (P < 0.05 unpaired t-test with Welch’s correction). In addition, biopsies were also stained with anti-CD4 (brown colour, panels d and e) (20× magnification). (f) The mean and s.d. of the number of CD4+ cells in each villous/crypt unit for unpaired samples from patients on or off olmesartan medoxomil. There was no significant change between on or off olmesartan (P = 0.67) using the unpaired t-test with Welch’s correction.
indicates successful signalling. Staining of the duodenal biopsies for psmad 2/3 found that nuclear localisation was at the same level in both of the groups (Figure 4a, b). Intracellular localisation on the other hand was significantly increased while on olmesartan medoxomil as compared to off olmesartan medoxomil (Figure 4c,d) ($P < 0.01$). This would indicate that the TGFβ signalling pathway is active in the patients while they are taking olmesartan medoxomil.

Expression of IL-15R

In refractory coeliac disease, CD8+ T cells are rendered less sensitive to regulatory T-cell suppression, due to an overexpression of IL-15. In addition, coeliac patients have an overexpression of IL-15 and IL-15R, which contribute to the activation of CTLs and subsequent killing of epithelial cells. To determine if IL-15R expression was altered with the use of olmesartan medoxomil, immunohistochemistry staining for IL-15R was performed on duodenal biopsies of OAE patients. As Figure 5a,b demonstrate, IL15R is up-regulated while on olmesartan medoxomil, as compared to off olmesartan medoxomil, which is similar to coeliac disease. Figure 5c shows that IL15R is not significantly increased by lamina propria cells ($P = 0.2$), but is significantly increased by epithelial cells (Figure 5d) ($P < 0.05$), while on olmesartan medoxomil.

Response of Caco2 cells to olmesartan medoxomil

Because many OAE patients were diagnosed with colitis, we used a colonic epithelial cell line (Caco 2) to determine if olmesartan medoxomil could directly impact the function of colonic epithelial cells. To do this, Caco-2 cells were treated with olmesartan medoxomil, losartan or telmisartan. As one feature of coeliac disease is aberrantly increased production of IL-15, we first determined if exposure of Caco 2 cells to these ARBs results in the expression and/or release of IL-15. Olmesartan medoxomil at 30 mmol/L clearly induces the expression and/or release of IL-15 after a 4 h exposure (Figure 6a), whereas losartan (Figure 6b) and telmisartan (Figure 6c) at 30 mmol/L do not. We also did not see any expression of IL15 with treatment of the diluent for olmesartan alone (data not shown). Caco-2 cells also increased their expression of IL15R after exposure to olmesartan medoxomil (Figure 6d), but not after exposure to losartan.
Figure 3 | FoxP3 expression in duodenum: Duodenal biopsies from a representative OAE patient while on (a) or off (b) olmesartan were stained with anti-FoxP3 (brown). (c) The mean with s.d. of unpaired on and off samples. There was a statistically significant increase in the number of FoxP3+ cells with the use of olmesartan medoxomil ($P < 0.05$), using the unpaired t-test with Welch’s correction.

Figure 4 | Phosphorylation of smad 2/3: Duodenal biopsies from a representative OAE patient while on (a) or off (b) olmesartan medoxomil were stained with anti-psmad 2/3 (brown). (c, d) The mean with s.d. for nuclear (c) and intracellular (d) localisation of unpaired duodenal biopsies from patients on or off olmesartan. There was no statistically significant difference with the nuclear localisation between on and off olmesartan medoxomil ($P = 0.43$); however, there was a statistically significant increase in the intracellular localisation with the use of the drug, using unpaired t-test with Welch’s correction ($P < 0.01$).
Untreated Caco-2 cells had the expected distribution pattern of ZO-1 (Figure 7a), which was somewhat altered at 30 min after treatment with olmesartan medoxomil (Figure 7b), and clearly disrupted after 4 h (Figure 7c).

Response of Caco 2 cells to olmesartan acid and diacetyl (medoxomil)

As displayed in Figure 8, olmesartan acid alone was also able to induce increased expression of IL-15 by Caco-2 cells (panels a and b). Treatment with the diluent alone, DMSO, did not induce expression of IL-15 (panel a), but olmesartan acid did (panel b). Corresponding staining of IL-15 after treatment with olmesartan medoxomil is provided as a direct comparison (panel c). As compared to DMSO alone (panel d), olmesartan acid was also able to disrupt the ZO-1 tight junction protein pattern (panel e). Staining with diacetyl (medoxomil) did not result in a disruption of ZO-1 (panel f). Using ImageJ software, the immunofluorescence was quantitated, and this is displayed in panel (g).

DISCUSSION

Patients with OAE have often been misdiagnosed with coeliac disease or more specifically refractory coeliac disease, due to the failure to respond to a gluten free diet. Our data show that OAE shares many of the pathogenic pathways present in coeliac disease. In OAE, there is a clear increase in CD8+ cells while the patient is taking olmesartan medoxomil. The additional increase in the number of granzyme B+ cells would indicate that CTLs are increased in the villous crypt units of the patients while on olmesartan medoxomil and may play a role in the destruction of the epithelium, especially as granzyme B+ cells are increased in both the lamina propria and the epithelial layer while on olmesartan medoxomil. This increase in granzyme B+ cells is similar to untreated coeliac patients and refractory coeliac patients.19

In addition, no significant change in the number of CD4+ cells was observed between those on olmesartan medoxomil and those off. In coeliac disease, gluten specific CD4+ T cells develop and expand, leading to

(Figure 6e). Untreated Caco-2 cells had the expected distribution pattern of ZO-1 (Figure 7a), which was somewhat altered at 30 min after treatment with olmesartan medoxomil (Figure 7b), and clearly disrupted after 4 h (Figure 7c).
increased levels of interferon gamma (IFNγ) in the intestine and anti-gluten antibodies in the serum.20 The activation and expansion of inflammatory CD4+ T cells is mediated by HLA DQ2 and/or HLA DQ8, and as such, over 95% of all coeliac patients are either DQ2 and/or DQ8 positive. At some point afterwards, B cells begin to produce anti-tissue transglutaminase IgA (IgG in IgA deficient individuals). So far, no OAE patients have been identified that are positive for antibodies against tTG.1, 13 Also of interest, was the high incidence of DQ2+ individuals in OAE (71%). Thus, although the number of CD4+ cells in the villous crypt unit did not change on or off olmesartan medoxomil, it is still possible that DQ2 could play a role in the pathogenesis of OAE. However, we continue to identify OAE patients that are neither DQ2 nor DQ8 positive (>4). Therefore, DQ2 positivity is not required for developing OAE.1

The ongoing inflammation suggests a loss of regulation of inflammation; the observation that FoxP3+ cells were significantly increased in the lamina propria of individuals on olmesartan medoxomil suggests that regulatory T cells were present, and indeed expanded, but lacked the ability to suppress the inflammation. Immune regulation in the intestine is crucially dependent upon TGFβ, and it has been speculated the ARBs may inhibit TGFβ signalling. Our results with the psmad 2/3...
staining, in which there was no difference in psmad 2/3 nuclear localisation between the on and off groups would suggest that TGFβR signalling is occurring at the same level on or off olmesartan medoxomil, implying that TGFβR signalling is occurring correctly and that olmesartan medoxomil is not inhibiting TGFβ signalling.

An additional pathway in which lamina propria lymphocytes are rendered unresponsive to regulatory T cells is the IL-15 pathway. Previous studies have demonstrated that overexpression of IL-15 and IL15R occurs in refractory sprue patients and overexpression of IL-15 in mice results in enteropathy that is diet independent.18, 21, 22 The enteropathy that occurs in the transgenic mice that overexpresses IL-15 in the intestine is also associated with the influx of a large number of CD8+ cells.22 Another publication demonstrated that in coeliac patients, IL-15 interferes with the suppressive ability of regulatory T cells.23 Gluten can stimulate epithelial cells to over express IL15, and may be why coeliac patients as a group overexpress IL-15 and/or have sensitivity to IL-15.23, 24 Disruption of the tight junction complexes of epithelial cells through disruption of ZO-1 localisation, also occurs as an innate immune response to gluten in coeliac disease.25 Our observation that olmesartan medoxomil can increase the expression of both IL-15 and IL15R by Caco2 cells, and that OAE patients on olmesartan medoxomil have increased levels of IL15R would suggest that the enteropathy associated with olmesartan medoxomil use is a consequence of increased IL15 expression induced by olmesartan medoxomil. All together then, many of the mechanistic pathways present in OAE pathogenesis are similar to those of innate immune responses to gliadin in coeliac disease.26 These pathways would include the increased numbers of CD8+ cells, the increased expression of IL-15R, and a state of nonresponsiveness to increased numbers of regulatory T cells. A central thread to all of these mechanisms is the intestinal epithelial cell, which is targeted by CTLs in coeliac disease.

In addition, our observations that directly treating Caco 2 cells with telmisartan and losartan neither increased IL-15 production nor disrupted tight junction protein complexes indicate that these deleterious OAE effects are not associated with all of the ARBs. This is supported by the findings of one study that found that telmisartan and losartan do not appear to be associated with enteropathy.27 Further, the fact that olmesartan acid by itself can disrupt Zo1 in intestinal epithelial cells as well as induce increased expression of IL15, and that medoxomil by itself (diacetyl) does not, would suggest that olmesartan acid by itself is causing the pathology in OAE. However, many more experiments need to be done to prove that only olmesartan acid is causing all of pathology in OAE and to determine if any other ARBs exert any of the pathology associated mechanistic pathways induced by olmesartan acid.
Figure 8 | Olmesartan acid alone can increase IL-15 and disrupt ZO-1. Caco-2 cells were cultured for 5–7 days, treated with 30 μmol/L olmesartan acid, 30 μmol/L DMSO, and/or 30 μmol/L diacetyl (medoxomil) for 4 h and then stained for IL-15 (red) (a–c) or ZO-1 (green) (d–f). (a, d) DMSO (diluent for olmesartan acid) alone. (b, e) Olmesartan acid and (c) olmesartan medoxomil. (f) Diacetyl alone. (g) A graph displaying the immunofluorescence of ZO-1 staining of Caco2 cells treated with the different reagents, where each dot represents a different well of Caco-2 cells treated with the listed reagent. *P < 0.05 and **P < 0.01.
In summary, a small number of patients will develop enteropathy in response to olmesartan medoxomil; this enteropathy is not gluten dependent, and both the stomach and colon of many OAE patients are also affected in addition to the small intestine. Our work suggests that epithelial cells respond to olmesartan medoxomil, and more specifically, the olmesartan acid portion of the olmesartan medoxomil increases the expression of IL-15 and disrupts the tight junction protein ZO-1. As some studies have demonstrated that refractory coeliac sprue patients also have aberrantly high expression of IL-15, one potential unifying theory for OAE is that these patients in certain circumstances were unable to down-regulate the IL-15 expression induced by olmesartan medoxomil, and therefore later developed enteropathy.

One limitation was our inability to safely rechallenge the patients with olmesartan medoxomil due to the severity of the illness; therefore, we cannot conclusively state that olmesartan medoxomil use directly causes the increase in the numbers of CD8+ cells that we had observed in OAE patients while on olmesartan medoxomil. We were also unable to do paired analyses because of the small number of cases in which paraffin embedded tissue was still available for research use from both on and off olmesartan medoxomil. We continue to identify patients with OAE and are conducting further analyses on other potential genetic causes as well as the mechanistic pathways that contribute to CD8+ cell recruitment by olmesartan medoxomil-treated epithelial cells.

AUTHORSHIP

Guarantor of the article: Joseph A. Murray, MD.

Author contributions: EV Marietta, A Rubio-Tapia: Study concept and design; EV Marietta, A Nadeau, AK Cartee, I Singh, A Rubio-Tapia: data acquisition; EV Marietta, A Nadeau, I Singh, RS Choung, I Singh, T-T Wu, A Rubio-Tapia, JA Murray: data analysis; EV Marietta: manuscript drafting; A Rubio-Tapia, JA Murray: critical revision of manuscript; EV Marietta, RS Choung: statistical analysis. All authors reviewed and approved the final manuscript.

ACKNOWLEDGEMENTS

We acknowledge the Mayo Pathology Resource Core, especially Ms. LouAnn Gross for her work with the immunohistochemistry staining and Mr. Eugene Krueger in the Optical Microscopy Core within the Mayo Clinic Center for Cell Signaling in the Department of Gastroenterology for help with the confocal laser microscope imaging. We would also like to thank Ms. April Huseby for her help with the use of Image J software and the quantitation of immunofluorescence.

Declaration of personal interests: None.

Declaration of funding interests: This study was funded in part by a grant from the National Institutes of Health (R01 DK057892 to J.A.M.).

REFERENCES

Aliment Pharmacol Ther © 2015 John Wiley & Sons Ltd

27. Samo S, Stobaugh DJ, Ehrenpreis ED. Investigation of the link between intestinal adverse events and olmesartan using the Food and Drug Administration Adverse Event Reporting System. *Gastroenterology* 2014; 146(Suppl. 5):S-604.